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Abstract 

Background: The genetic basis of wing development has been well characterised for model insect species, but 
remains poorly understood in phylogenetically divergent, non-model taxa. Wing-polymorphic insect species poten-
tially provide ideal systems for unravelling the genetic basis of secondary wing reduction. Stoneflies (Plecoptera) 
represent an anciently derived insect assemblage for which the genetic basis of wing polymorphism remains unclear. 
We undertake quantitative RNA-seq of sympatric full-winged versus vestigial-winged nymphs of a widespread wing-
dimorphic New Zealand stonefly, Zelandoperla fenestrata, to identify genes potentially involved in wing development 
and secondary wing loss.

Results: Our analysis reveals substantial differential expression of wing-development genes between full-winged 
versus vestigial-winged stonefly ecotypes. Specifically, of 23 clusters showing significant similarity to Drosophila wing 
development-related genes and their pea aphid orthologues, nine were significantly upregulated in full-winged 
stonefly ecotypes, whereas only one cluster (teashirt) was substantially upregulated in the vestigial-winged ecotype.

Conclusions: These findings suggest remarkable conservation of key wing-development pathways throughout 
400 Ma of insect evolution. The finding that two Juvenile Hormone pathway clusters were significantly upregulated 
in vestigial-winged Zelandoperla supports the hypothesis that Juvenile Hormone may play a key role in modulating 
insect wing polymorphism, as has previously been suggested for other insect lineages.
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Background
The unparalleled diversity of insects is often attributed to 
the evolution of insect flight, ca. 400 Ma [1–5]. Specifi-
cally, wing evolution has carried numerous advantages, 
including an increased ability for insects to access novel 
resources and ecosystems, improved predator avoidance, 
and enhanced mate location [1]. This dispersal capacity 
has, however, been subsequently lost in numerous insect 
lineages, across almost all winged orders [6, 7].

The development and maintenance of wings requires 
significant energy expenditure, and some wing-dimorphic 

insect species thus exhibit apparent ‘trade-offs’ between 
flight-ability versus reproductive output [8–12]. Environ-
mental conditions may also contribute to the evolution 
of wing-reduced lineages [6, 13], with flight loss particu-
larly common in stable ecosystems that lack predators 
[14, 15]. Wing-reduced lineages are also disproportion-
ally abundant in isolated areas, where there is a high level 
of mortality in dispersing individuals, and in areas where 
the energetic costs of flight are high [1, 16]. Likewise, 
wing loss is particularly common at higher altitudes [17], 
with recent studies implying that exposure, modulated 
by the alpine treeline, may be a key driver of insect wing 
reduction [18, 19].

Wings have been completely lost in many insect spe-
cies, whereas some species comprise distinct winged 
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and wingless ecotypes, often associated with differing 
environmental conditions [20–22]. As the distinct phe-
notypes of wing-dimorphic species have very similar 
genetic backgrounds, such taxa present ideal systems for 
exploring the molecular basis of wing loss. Previous stud-
ies of wing-dimorphic species have suggested that wing 
polymorphism can be genetically determined [23–27], 
controlled by environmentally driven gene expression 
(polyphenism; [11, 28–30]), include both genetic and 
environmental components [31], or be under the control 
of epigenetic factors [32, 33].

Given the range of environmental, genetic, and epige-
netic factors that may contribute to wing polymorphism, 
elucidating the developmental basis of wing loss can be 
challenging. While the gene networks underpinning 
wing development have been well-characterised in model 
organisms such as Drosophila melanogaster [34, 35] and 
Tribolium castaneum [36], very little is known about the 
underlying molecular biology of wing development in 
non-model insect taxa. Several recent studies, however, 
have identified the key genes underlying wing develop-
ment in non-model taxa by comparing gene-expression 
across winged and wingless morphs of wing polymor-
phic species (see Additional file 1: Table S1). While some 
portions of the key insect gene networks appear to be 
conserved among a variety of holometabolous and hem-
imetabolous taxa [37–40], the extent of their phyloge-
netic conservation across class Insecta remains unclear.

The New Zealand stonefly Zelandoperla fenestrata 
species group (hereafter simply referred to as Z. fenes-
trata) contains both full-winged and vestigial-winged 
ecotypes, with the wing-reduced phenotype particularly 
common at higher altitudes [20, 41]. The distinct mor-
photypes were traditionally considered distinct species 
(full-winged: Zelandoperla fenestrata or Zelandoperla 
tillyardi, vestigial-winged: Zelandoperla pennulata) [41], 
but more recent molecular studies demonstrate that 
vestigial-winged lineages have evolved independently on 
numerous occasions [20, 21]. In addition, a recent study 
identified several outlier loci strongly associated with 
vestigial versus full-winged ecotypes of Z. fenestrata, 
strongly suggesting a genetic basis for wing-length varia-
tion in this species [42].

In this study, we use quantitative RNA-seq to com-
pare gene-expression patterns between the sympatric 
nymphs of full-winged versus vestigial-winged Z. fenes-
trata, to identify genes involved in wing development, 
wing growth and wing differentiation in this dimorphic 
species. Additionally, we assessed expression differences 
in candidate genes involved in the juvenile hormone 
(JH) pathway, as these genes have previously been dem-
onstrated to play a role in insect wing polymorphisms 
[11, 28]. We identified genes that were significantly 

differentially expressed between vestigial-winged and 
full-winged ecotypes, with a particular focus on genes 
known to be involved in the wing-development networks.

Results
Transcriptome sequencing, assembly, and annotation
Sequencing yielded 204,011,700 125-bp paired reads. 
After initial adapter trimming and quality filter, 
147,396,767 reads remained (Additional file 1: Table S2). 
These raw RNA-seq reads have been deposited in the 
NCBI repository under BioProject PRJNA525904. De 
novo assembly using Trinity generated 552,851 tran-
scripts hierarchically clustered into 442,924 Trinity 
‘genes’, with a mean length of 587.6  bp and an N50 of 
887  bp (Additional file  1: Table  S2). 98.6% of BUSCO 
proteins were identified as full-length proteins, with only 
1.0% fragmented and 0.4% missing (Additional file  1: 
Table  S2). Over 84% of input reads aligned as proper 
pairs one or more times, and the overall alignment was 
over 97% (Additional file 1: Table S2). TransDecoder pre-
dicted open reading frames in 108,209 transcripts and 
BLASTp annotated over 70% of these ORFs (UniProt/
Swiss-Prot database) (Additional file 1: Table S3).

Corset clustering reduced the number of transcripts 
to 227,791, which were assigned to 140,592 clusters 
with a mean transcript length of 1023.5 bp and an N50 
of 1668  bp (Additional file  1: Table  S2). 98.5% of BUS-
COs were found to be complete with 0.7% missing and 
0.8% fragmented (Additional file  1: Table  S2). 84% of 
input reads aligned concordantly one or more times, and 
the overall alignment was over 96% (Additional file  1: 
Table S2).

Genes differentially expressed across the full‑winged 
and vestigial‑winged ecotypes
DE analysis identified 1042 clusters differentially 
expressed at FDR ≤ 0.01 and LogFC ≥ 1.5 or ≤ − 1.5. Of 
the 1042 DE clusters, 511 contained TransDecoder-pre-
dicted longest ORFs which were annotated by emapper. 
Of these, 332 clusters were more abundant in full-winged 
individuals, whilst 179 clusters were more highly 
expressed in vestigial-winged notum (Fig. 2). Forty-three 
clusters were annotated with GO:0035220, biological 
process ‘wing disc development’; 17 of which were more 
highly expressed in full-winged notum, whilst 26 were 
more abundant in vestigial-winged notum. All clusters 
with FDR ≤ 0.01 and LogFC ≥ 1.5 or ≤ − 1.5, including 
annotations, are provided in Additional file 2: Table S4.

Identification and expression of wing development genes
Twenty-three clusters with significant similarity to Dros-
ophila wing development-related genes and their pea 
aphid orthologues were identified, including genes in 
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each of the four wing development pathways, as well as 
homeobox genes (Table 1). As a result of low numbers of 
reads aligning to the transcripts of one of these clusters, 
statistics and expression data were available for only 22 
clusters. Just over half of these clusters were not signifi-
cantly differentially expressed across ecotypes (Fig.  3a). 
However, nine clusters were significantly more expressed 
in the notum of full-winged individuals (at FDR ≤ 0.01, 
LogFC ≥ 1.5), including wingless, nubbin, distalless, 
hedgehog, ventral veins lacking, and engrailed (Fig. 3a). By 
contrast only a single cluster (teashirt) was upregulated 
in the vestigial-winged ecotype (Fig. 3a). DE analysis also 
revealed two clusters with known roles in wing develop-
ment; optomotor-blind protein and a frizzled receptor 
family member. Both were more highly expressed in full-
winged individuals (Fig. 3b).

In addition to wing development genes (above), a juve-
nile hormone acid methyltransferase cluster was identi-
fied as differentially expressed between the two ecotypes, 
being significantly upregulated in the vestigial-winged 
samples (Fig.  3b). A juvenile hormone esterase cluster 
was also significantly differentially expressed between 
vestigial-winged and full-winged ecotypes, being more 
abundant in vestigial-winged ecotypes (Fig. 3b).

Discussion
In this study, we compared the expression of genes in the 
notum of full-winged versus vestigial-winged ecotypes 
of the wing-dimorphic stonefly Zelandoperla fenestrata. 
The former specimens had prominent wing-bud devel-
opment, whereas the latter did not (Fig.  1). We identi-
fied over 20 clusters with significant similarity to genes 
previously implicated in wing development in Drosophila 
melanogaster. Over 1000 clusters were significantly dif-
ferentially expressed among the two ecotypes, including 
numerous clusters annotated as genes involved in key 
wing development pathways (Figs. 2, 3). We discuss the 
implications of these findings, particularly in reference 
to identifying the key gene/s potentially involved in wing 
loss, below.

Some of the clusters with differential expression 
between full-winged and vestigial-winged forms of Z. 
fenestrata stoneflies are also critical components of wing 
patterning in D. melanogaster. While it is unclear how 
stonefly wing development differs from Drosophila, the 
key genes appear conserved, and the common ances-
try of these insect lineages implies that some aspects of 
the patterning system are likely conserved, especially 
those involved in initial patterning. This finding suggests 

Table 1 Wing development genes predicted in the notum of vestigial- and full-winged Zelandoperla fenestrata 

Wing development gene Top (NCBI) blast hit

e‑Value Species Gene Accession

Engrailed (en) 2.00E−17 Drosophila miranda Engrailed XM_017294233.1

Hedgehog (hh) 4.00E−180 Neodiprion lecontei Hedgehog XM_015659074.1

Cubitus interruptus (ci) 0.00E+00 Zootermopsis nevadensis Cubitus interruptus XM_022064111.1

Patched (ptc) 0.00E+00 Cryptotermes secundus Patched XM_023869672.1

Decapentaplegic (dpp) 1.00E−130 Agrilus planipennis Decapentaplegic XM_018469193.1

Spalt major (sal) 0.00E+00 Tribolium castaneum Spalt-major XM_008195490.2

Apterous (ap) 2.00E−75 Cryptotermes secundus Apterous XM_023854991.1

Apterous-like 1.00E−40 Zootermopsis nevadensis Apterous-like XM_022074071.1

Notch 0.00E+00 Cryptotermes secundus Notch XM_023868524.1

Serrate (Ser) 0.00E+00 Cryptotermes secundus Jagged XM_023862401.1

Wingless (wg1) 0.00E+00 Periplaneta americana Wingless KJ680328.1

Wingless (wg16) 0.00E+00 Cryptotermes secundus Wnt-16 XM_023857064.1

Wingless (wg7) 5.00E−165 Cryptotermes secundus Wnt-7 XM_023860077.1

Wingless (wg6) 0.00E+00 Cryptotermes secundus Wnt-6 XM_023845703.1

Wingless (wg5) 0.00E+00 Zootermopsis nevadensis Wnt-5 XM_022080506.1

Distalless (Dll) 1.00E−94 Cryptotermes secundus Distal-less XM_023852254.1

Vestigial (vg) 7.00E−50 Cryptotermes secundus Vestigial XM_023854945.1

Anntenapedia (Antp) 6.00E−52 Cryptotermes secundus Antennapedia-like XR_002842332.1

Ultrabithorax (Ubx) 4.00E−111 Nilaparvata lugens Ultrabithorax KR869786.1

Homothorax (hth) 0.00E+00 Zootermopsis nevadensis Homothorax XM_022058904.1

Teashirt (tsh) 2.00E−173 Zootermopsis nevadensis Tiptop XM_022075564.1

Nubbin (nub) 1.00E−67 Blattella germanica Nubbin LT216433.1

Ventral veins lacking (vvl) 8.00E−172 Zootermopsis nevadensis POU domain protein CF1A XM_022061685.1
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Fig. 1 Dorsal view of Z. fenestrata nymphs sequenced in this study illustrating the extent of wing-bud development in a the vestigial-winged 
ecotype, and b the full-winged ecotype. P pronotum, M1 mesonotum, M2 metanotum, W1/W2 wing-buds
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Fig. 2 Volcano plot displaying differentially expressed genes in the notum of full-winged and vestigial-winged Zelandoperla fenestrata. The x-axis 
displays the log fold-expression change, with negative values indicating increased expression in the vestigial-winged ecotype, and positive values 
indicating increased expression in the full-winged ecotype. The y-axis displays the −log10 adjusted p value. Genes that were significantly more 
expressed (FDR ≤ 0.01) are coloured (full-winged ecotype = cyan, vestigial-winged ecotype = magenta)
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a remarkable conservation of these key developmen-
tal pathways, as the ancestors of Plecoptera and Diptera 
diverged ca. 400 Ma [4].

About half of these candidate wing-development genes 
were not significantly differentially expressed across the 
two ecotypes (Fig.  3a). This result is unsurprising, as 
many of these genes are highly pleiotropic, having addi-
tional important developmental roles [40]. Several key 
wing-development genes were, however, significantly 
differentially expressed across vestigial-winged and full-
winged ecotypes (Fig.  3a). The prominent wing-buds in 
the full-winged specimens indicate that wing develop-
ment is already well underway; it, therefore, seems likely 
that the lower expression level of these wing-develop-
ment genes in the vestigial-winged ecotype may repre-
sent the down-stream consequences of wing reduction, 
rather than representing the underlying causes of wing 
reduction.

In Drosophila, three sets of genes act to define the ante-
rior–posterior, the dorsoventral and the proximo-distal 
axes (reviewed by [43, 44]). The anterior–posterior axis 
is defined by the expression of engrailed [45]. Engrailed 
causes the expression of hedgehog [46], which diffuses 
across the anterior–posterior boundary of the wing, to 

activate decapentaplegic [47, 48]. Expression of engrailed 
and hedgehog is reduced in vestigial-winged compared to 
full-winged stoneflies, as is the expression of optomotor-
blind (a gene acting downstream of decapentaplegic), 
confirming these genes play crucial roles in stonefly wing 
development.

The dorsoventral axis of the Drosophila wing is pat-
terned by wnt signalling molecules, especially wingless 
(wg1) [49–52]. Wingless and three other wg molecules 
(wg 6, 7, and 16) have reduced expression in vestigial-
winged stoneflies, as do their receptors, frizzled. A 
downstream patterning factor responding to wingless, 
ventral-veinless (also known as drifter) [53] is also signifi-
cantly lower in expression in vestigial-winged stoneflies.

Proximo-distal growth of the Drosophila wing is regu-
lated by two key genes, teashirt and nubbin [54]. Nubbin 
is down-regulated in vestigial-winged stoneflies, while 
teashirt is up-regulated. Teashirt is known to be highly 
expressed in the notum and wing-hinge of Drosophila 
[55], so increased expression was not unexpected in the 
vestigial-winged nymphs given the slightly higher pro-
portion of notum tissue in the vestigial-winged extrac-
tions (see Fig. 1). However, this slightly higher proportion 
of notum tissue is unlikely to explain the fourfold change 

a

b

Fig. 3 Comparative expression of a wing development genes and b additional genes of interest in the notum of full-winged versus 
vestigial-winged ecotypes. Genes in bold are significantly differentially expressed across ecotypes. Positive LogFC values indicate the gene is 
more expressed in full-winged ecotypes, with the intensity of the cyan shading indicating the extent of increased expression. Negative LogFC 
values indicate the gene is more expressed in vestigial-winged ecotypes, with the intensity of magenta shading indicating the extent of increased 
expression. Shading in columns to the right indicate the expression of each gene in individual samples (see key)
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in expression we observed (Fig. 3a). While it is not clear 
what the consequences for wing outgrowth of these 
changes in gene expression are, they imply mechanisms 
of proximo-distal axis growth of the wing differ between 
full-winged and vestigial-winged forms. In Drosophila, 
repression of teashirt is required for the initiation of wing 
development [55]. That this gene is upregulated in vestig-
ial-winged stoneflies implies that down-regulation may 
not occur, potentially providing a proximate mechanism 
(rather than the ultimate cause) of wing reduction.

Differences in gene expression between full-winged 
versus vestigial-winged forms of stonefly encompass 
mechanisms that define and pattern all three wing axes, 
implying that all aspects of wing growth and patterning 
may be reduced in vestigial-winged stoneflies. Given the 
relatively rapid evolution of this trait (see [19]), it seems 
very unlikely that simultaneous changes across all of these 
networks underlie the causative changes in the evolution 
of vestigial-winged forms. We, therefore, suggest that the 
causative changes may lie upstream of wing patterning and 
growth, perhaps in juvenile hormone (JH) signalling. JHs 
regulate several key processes in insect physiology [56], 
and have previously been associated with wing polymor-
phism in both Orthoptera [28, 57] and Hemiptera [58, 59].

Two JH pathway clusters were significantly upregulated 
in the vestigial-winged ecotype, suggesting JH may play a 
role in modulating wing polymorphism in Z. fenestrata. 
JH levels in insects can vary both within and across devel-
opmental instars, with JH levels typically lower in later 
instars, but with levels also dropping significantly directly 
before moulting [56]. Populations of Z. fenestrata may 
comprise individuals at a variety of developmental stages, 
as the species has an extended emergence ‘window’ (see 
[60]). Although the wild-caught nymphs used in this 
study were all late instars, we were unable to tightly con-
trol for their developmental stage, and as a result, some 
variation in the expression of key JH-related genes might 
be expected among individuals (e.g. within ecotypes). 
For instance, the finding that JH acid methyltransferase 
expression varied substantially among vestigial-winged 
specimens (Fig. 3b) might potentially reflect minor devel-
opmental differences among these specimens. How-
ever, there is no evidence for systematic developmental 
asynchrony among these ecotypes where they co-occur, 
and indeed there are several localities at which we have 
simultaneously collected both full-winged and vestigial-
winged adults [19, 42]. Systematic differences among 
ecotypes in the expression of JH-related genes are thus 
unlikely to result solely from (minor) differences in devel-
opmental stage. For instance, JH acid methyltransferase 
expression is consistently low across all full-winged speci-
mens (despite likely developmental variation within this 
ecotype, see Fig. 3b), but variable among vestigial-winged 

individuals. Similarly, JH esterase expression is consist-
ently high across all vestigial-winged specimens, but is 
highly variable in full-winged individuals. In both cases, 
the extensive differentiation among ecotypes is unlikely 
to reflect developmental timing, suggesting that the 
repression of these genes may play an important role in 
Z. fenestrata wing development.

In addition to the extensive evidence for effects of JHs 
on insect wing development, these genes have previ-
ously been associated with delayed metamorphosis [61], 
and variation in several other insect life-history traits 
(e.g. fecundity; [62]). It is thus conceivable that JH could 
simultaneously modulate both wing phenotype variation 
and additional developmental differentiation between 
high-altitude and low-altitude stonefly lineages (such as 
differences in body size and emergence timing, see [60, 
63]). Future molecular and ecological studies will aim to 
unravel the potential role of JH in explaining ecotypic var-
iation within and among wing-polymorphic stonefly taxa.

Conclusion
Our study reveals differential expression of wing-devel-
opment genes between closely related full-winged and 
vestigial-winged stonefly ecotypes, consistent with pre-
vious data from Drosophila, suggesting remarkable con-
servation of key wing development pathways throughout 
400 Ma of insect evolution. The significant gene expres-
sion differentiation observed among stonefly ecotypes 
potentially provides fertile new directions for future evo-
lutionary research on insect wing reduction.

Methods
Sample collection
Late instar Z. fenestrata nymphs were collected by hand 
from beneath rocks in the stream at an altitude of 670 m 
in Lug Creek, Rock and Pillar Range, Otago, New Zealand, 
in July 2017. This site is just above the alpine tree line, and 
is part of a narrow zone where full-winged and vestigial-
winged ecotypes are found in sympatry [19]. Nymphs 
were stored in containers in water from their natal stream, 
and kept cool in an ice bath while they were returned to 
the laboratory. Nymphs were characterised as either full-
winged or vestigial-winged based on clear differences in 
wing-bud development (Fig. 1), as previous work has indi-
cated that these two wing-bud development types are cor-
related with the distinct adult ecotypes [19, 41, 42].

RNA extraction
Ten nymphs from each of the vestigial-winged and full-
winged ecotypes were extracted and sequenced. As suf-
ficient quantities of RNA could not readily be obtained 
from the wing-buds (alone) of vestigial winged nymphs 
(as their wing-buds are extremely small, see Fig.  1), 
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we instead extracted RNA from the complete notum 
(including wing-buds) of both ecotypes. This consistent 
approach allowed us to directly compare gene expres-
sion across full-winged and vestigial-winged ecotypes, 
although we note the ratio of wing-bud tissue to notum 
tissue differed across vestigial-winged and full-winged 
specimens (see Fig. 1). Nymphs were immobilised briefly 
on dry ice, then pinned through the head and abdo-
men under a binocular dissection scope before the mes-
onotum (M1; Fig.  1) and metanotum (M2; Fig.  1) were 
removed as a single sample. A shallow incision using a 
razorblade was made across the dorsal surface between 
the protonotum and M1. A lateral incision was then 
made on each side separating M1 and M2 from the meso- 
and metapleuron. A final incision between M2 and the 
first tergal segment was used to free M1 and M2. Care 
was taken to remove any fat bodies or viscera that were 
attached centrally to M1 or M2 to maintain consistency 
between samples. Once dissected, the notum samples 
were immediately frozen on dry ice and stored at − 80 °C.

Tissue was homogenised with hard plastic homogenis-
ing probes in RTL buffer (supplied as part of the Qiagen 
RNeasy kit) using an Omni Tissue Homogenizer. RNA 
isolation was then completed following the protocol 
supplied with the RNeasy kit (Qiagen), including an on-
column DNAse digestion. Once extracted and washed, 
samples were eluted with 35 μL of RNAse-free water and 
then stored at − 80 °C.

Library preparation
The 260/230 and 260/280 ratios were examined using a 
NanoDrop spectrophotometer (Thermo Scientific), and 
the concentrations were assessed using a Qubit fluorom-
eter (Thermo-Fisher Scientific) with the RNA HS kit. 
RNA integrity was also assessed on a 1.5% agarose gel 
after electrophoresis. We used a poly-A capture to select 
for mRNA, and created a library using a TruSeq Stranded 
mRNA Library Prep Kit (Illumina), with each individual 
tagged to separate reads bioinformatically after sequenc-
ing. Library quality was assessed using the Agilent 2100 
Bioanalyzer and TBS 380 Fluorometer (Turner Bio-
systems, Sunny-vale, CA, USA), and all libraries were 
paired-end sequenced (2 × 125 bp) on a single lane of an 
Illumina HiSeq 2500.

Transcriptome assembly
The combined vestigial-winged- and full-winged-notum 
transcriptome was de novo assembled using Trinity 
v2.8.4 [64, 65]. Reads were quality trimmed using Trim-
momatic, run as part of the Trinity package with default 
settings [66, 67], and normalised in silico prior to assem-
bly. Descriptive statistics were calculated using TrinityS-
tats.pl. Transcriptome completeness was assessed using 

BUSCO v3.0.2 (an arthropod_odb9 database of 1066 
BUSCOs covering 60 species; [68, 69]) and RNA-seq read 
representation following the trinityrnaseq-wiki (github.
com/trinityrnaseq/trinityrnaseq/wiki). Transcript clus-
ters, clustered using Corset (see below), were quality 
checked in the same way.

The Trinity transcriptome was annotated using Trino-
tate v3.1.1 [70] and associated packages (TransDecoder 
v5.5.0, SQLite, blast + v, hmmer v3.2.1, Rnammer v1.2, 
signalP v4.1, tmhmm v2.0, trinotateR). Annotation of 
differentially expressed clusters (see below) used emap-
per-1.0.3 [71] based on eggNOG orthology data [72] with 
sequence searches performed using HMM and diamond 
[73, 74]. ‘Contigs of interest’ (i.e. differentially expressed 
clusters of contigs) were extracted from the Trinity tran-
scriptome fasta file using ‘fetchClusterSeqs.py’ script 
(github.com/Adamtaranto/Corset-tools) and protein 
sequences predicted using TransDecoder v 5.5.0. Anno-
tation of the longest ORFs was performed using emapper 
and two methods: HMMER, using the arthropod protein 
database artNOG, and diamond, using the eggNOG pro-
tein database.

Identification of differentially expressed transcripts
Differential gene expression between vestigial-winged 
and full-winged individuals was assessed using Cor-
set v1.07 [75] and with read alignment using bowtie2 
(v2.3.4.1) with multi-mapping enabled. Statistical analy-
sis used edgeR in R i386 3.5.1 [76]. Analysis followed the 
Corset wiki (github.com/Oshlack/Corset/wiki).

Genes of interest
In addition to identifying differentially expressed genes, 
expression data for genes with known roles in wing 
development were sought. Local blast searches were 
done using Drosophila wing development-related genes 
and orthologues from the pea aphid, Acyrthosiphon 
pisum [40], as query terms (taken from the NCBI web-
site: http://www.ncbi.nlm.nih.gov), and using BioEdit 
software [77]. Searches were done against clusters (Cor-
set clustered transcripts).
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