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Abstract 

Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and 
South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, 
and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, 
research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolu-
tion, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal 
traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, 
brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary pat-
terns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these 
processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, 
particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to 
integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes 
cichlid fishes a fascinating research system.

Natural habitat and life cycle
When diving for the first time in the clear waters of Lake 
Malawi, one is reminded more of a coral reef than of a 
freshwater lake, as the lake harbors hundreds of colorful 
fish species (Figs. 1A and  2E). Lake Malawi is part of a 
chain of lakes in the East African rift, an active continen-
tal rift zone that started to form 20–25 million years ago 
[1]. The rift gave rise to three of the ten largest freshwa-
ter lakes on our planet (Lake Victoria, Lake Malawi, and 
Lake Tanganyika) (Fig.  1B). The fish fauna within these 
lakes is dominated by a single fish family, the cichlid 
fishes (Cichlidae). No other group of fish has been more 
successful in colonizing these lake environments. In a few 

million years over 1200 species evolved in the Rift Lakes; 
most of these species do not exist elsewhere. While Lakes 
Malawi (Fig. 2B, E) and Tanganyika (Fig. 2C, F) are very 
clear and deep lakes (average depths 292 and 570  m, 
respectively), Lake Victoria is relatively shallow (average 
depth 41 m) and much more turbid (Fig. 2A, D).

In Lake Malawi and Lake Victoria, species of the hap-
lochromine cichlids (Haplochromini), the most species-
rich tribe, are predominant. Of the three rift lakes, the 
Malawi and Victoria radiations of haplochromine cichlids 
constitute the two youngest, but also most species-rich 
cichlid radiations (Fig.  1B). In Lake Malawi, the species 
number is estimated to be between 500 [2] and 860 [3]. 
These species diverged only within the last 800,000 years 
[3]. In Lake Victoria, over 500 species evolved in the last 
15,000 years [4] after the last desiccation of the lake [5]. 
Lake Victoria cichlids therefore have one of the highest 
speciation rates of all vertebrates [4]. In Lake Tanganyika, 
the oldest of the three lakes, roughly 240 species and 16 
tribes have been described [6].

Cichlids exhibit a variety of breeding and parental care 
behaviors. While almost all cichlid species exhibit rather 
strong parental care, it is the haplochromine cichlids 
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Fig. 1 Evolution and Development of East African cichlid fishes. A Representatives of East African cichlids for which genomic information is 
available (Note: the Astatotilapia genus contains multiple paraphyletic species and is therefore found in both Lake Malawi and Lake Tanganyika). 
B Simplified phylogeny of East African cichlids with the radiations of Lakes Tanganyika (green), Malawi (blue), and Victoria (orange). C Life cycle 
of a substrate-brooding cichlid from Lake Tanganyika (Julidochromis ornatus) and a mouth-brooding, haplochromine cichlid from Lake Malawi 
(Melanochromis auratus). Photo credits: Ralf Schneider (A. burtoni in A)

Fig. 2 Habitat of East African rift lake cichlid fishes. A–C Lakes Victoria (A), Malawi (B), and Tanganyika (C) are the hotspots of cichlid fish diversity 
with over 1200 mostly endemic species. D–F The waters of the three large rift lakes largely differ in visibility, with Lake Victoria being quite turbid 
(D) and Lake Tanganyika (F) and especially Lake Malawi (E) being much clearer. Note that the shown habitats are not fully representative of the rich 
diversity of lake habitats. Photo credits: Joanna Meier and Florian Moser (A, D), Hannes Svardal (B, E), Leo Lorber (C, F)
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(and some other tribes including for example some spe-
cies that belong to the non-haplochromine tilapia fishes) 
that show a particularly remarkable parenting behavior 
referred to as mouth-brooding. Courtship behavior in 
these haplochromine mouth-brooding cichlids is com-
plex and involves a crucial stage where the female picks 
up the unfertilized eggs into her mouth. Male cichlids 
have “egg-spots”, yellow-to-red markings on the anal fin 
that mimic the eggs [7, 8]. During courtship, the female 
will attempt to take up these “egg dummies’’ alongside 
the real eggs, at which point the male fertilizes the eggs 
within the female’s mouth [7, 8]. This cycle repeats sev-
eral times, ensuring high rates of fertilization. Under 
constant movement the embryos develop in the mouth 
of the mother, from which they only leave after 2 weeks 
or more. Relative to substrate breeders, mouth-brooding 
cichlid larvae tend to have a much larger yolk sac as they 
develop in the protected environment of the mother’s 
mouth (Fig. 1C). The non-haplochromine tribes of Lake 
Tanganyika are mostly substrate breeders. In these spe-
cies, the eggs are adhesive and attached to stones or 
within crevices, where they are guarded, cleaned, and 
fanned by the parents (Fig.  1C). A particularly unusual 
form of substrate breeding is shell breeding, where eggs 
are laid in empty shells of gastropods [9]. Consequently, 
because of this variation in parental care behaviors, the 
number of eggs per female also differs drastically, from 
10 to 80 in mouth-brooding cichlids, to up to hundreds 
or even more than a thousand eggs in substrate-brooding 
cichlids [9].

There are several descriptions of different aspects of 
cichlid fish ontogeny. These include detailed develop-
mental staging guides for the Nile tilapia Oreochromis 
niloticus [10] and the haplochromine cichlid Astatotila-
pia burtoni [11] (Fig. 1A). Furthermore, there are concise 
developmental descriptions for a few of other species 
[12–15] and more targeted ontogenetic descriptions 
focused on early embryogenesis [16], coloration [17–19], 
fin development [20], skeleton development [21, 22], and 

gene expression [23]. Development of cichlids is simi-
lar to other teleost species, although early development 
in cichlids is two to three times slower in comparison 
with zebrafish, as shown for the African non-haplochro-
mine cichlid Oreochromis niloticus and the Neotropical 
Midas cichlid Amphilophus citrinellus [24]. One of the 
most important differences compared to many other 
teleost species is that cichlids undergo “direct develop-
ment” when transitioning to the adult form [11], mean-
ing that they do not pass through a free-feeding larval 
stage (such as in zebrafish) [25]. Consequently, many 
traits that are not present in intermediate larval forms 
of indirectly developing species develop relatively early 
and directly into the adult form in cichlids (e.g., fin struc-
tures [11]). After 2 to 3 weeks, the juveniles start to feed. 
During this period, mouth-brooding cichlids leave the 
mother’s mouth for increasing periods of time until they 
completely separate. Cichlids are sexually mature after 
4 months (e.g., some Astatotilapia burtoni lab strains) to 
up to a year or longer for larger species. Cichlids undergo 
indeterminate growth, meaning that they grow rapidly 
during ontogeny but also continue to grow as adults. 
Adult East African cichlids are usually between 5 and 
25  cm in length (i.e., standard length, measured from 
snout tip to caudal fin base). Some piscivorous preda-
tors, such as Buccochromis lepturus in Lake Malawi and 
Boulengerochromis microlepis, can reach up to 40  cm 
and 90 cm in length, respectively. It should be noted that 
life history traits such as egg size, clutch size, fecundity, 
maturation rates and sizes, and care type and duration 
greatly differ between cichlid species, particularly when 
substrate- and mouth-brooding species are compared 
[26–28].

Field collection and laboratory culture
Laboratory culture
Most East African cichlid species can be reared in an 
aquarium setting and will breed in captivity (Fig. 3). Cich-
lids should generally be kept at temperatures between 22 

Fig. 3 Laboratory culture. A Example of a cichlid fish facility with 240-L aquaria and a zebrafish rack for raising juveniles (right) (University of 
Helsinki). B An Astatotilapia calliptera male with hiding tubes and an egg tumbler for raising embryos and juveniles (University of Cambridge)
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to 28 ℃ under a 12-h dark–light photoperiod, although 
shorter day cycles are possible (e.g., 16-h dark 8-h light 
cycle to e.g., reduce algae growth). Lacustrine species 
thrive in hard, alkaline water, while riverine species pre-
fer softer water. Fish can be fed at least once a day but 
should be fed at least twice a day if frequent breeding is 
required. Adults can be fed a mixed diet of flakes, pellets, 
and bloodworms. The specific nutrient content of dry 
food will depend on the habitat and natural diet of each 
species (e.g., a plant-based diet for algivorous and an ani-
mal protein-based diet for carnivorous cichlids). A juve-
nile diet consists of crushed dry food or freshly hatched 
brine shrimp nauplii.

A variety of aquaria systems can be used, ranging from 
independent, isolated, or semi-isolated aquaria (Fig. 3A) 
that require weekly or biweekly water changes, to more 
sophisticated setups such as circulating systems with a 
filtration unit or flow-through systems with a constant 
influx and outflow of fresh water. Tank size depends on 
the number, age, and size of the fish. Cichlid fry (newly 
hatched fish) can be reared in small aquaria (approxi-
mately 20 L), but must be moved to larger tanks once they 
reach 1 to 2 cm to avoid stunted growth due to competi-
tion for food and space. Adult fish can be kept at higher 
density breeding groups of 30 to 60 fish in an aquarium 
of at least 200 L. Cichlid males are known for their ter-
ritoriality and aggressive displays. Accordingly, to reduce 
hostile behaviors, breeding stocks should not be kept at 
excessively low densities. Tank environments should ide-
ally be enriched with artificial or real plants, hiding plas-
tic tubes, and sand substrate. Males can be provided with 
a clay pot in which they can establish a territory that also 
serves as a spawning site for gravid females.

If egg collection at the first-cell stage is required, 
crosses can be set up between one male and 8 to 15 
females, with the male and females separated by a 
transparent perforated divider. The divider can then be 
removed, and fish interactions monitored for spawning. 
If spawning is detected, the fish should be given an addi-
tional 30 to 90  min (depending on the species) to ferti-
lize the eggs. Healthy adult females generally spawn every 
4  weeks, but this may vary between species [29]. Note 
that this crossing strategy has to our knowledge only 
been attempted in mouth-brooding cichlids and remains 
to be tested for substrate brooders. For larger substrate-
brooding species, abdominal stripping (removing the 
eggs by gently massaging the abdomen) is an alterna-
tive approach to obtain eggs that can then be fertilized 
in vitro using sperm obtained by the same procedure in 
males [30].

Mouth-brooder embryos can be collected at any 
point in their development, from first-cell stage eggs to 
free-swimming juvenile stages. To do this, females are 

collected with a net and hand-held above a small water 
container. The embryos are removed either by gently 
massaging and opening their jaws or by gently spraying 
water in their buccal cavity with a small plastic pipette. 
Embryos can then be raised in cichlid egg tumblers in an 
aquarium or moved to 6-well plates (Fig. 3B). The tum-
blers provide a constant flow of oxygen-rich water that 
can be regulated to sustain a gentle egg motion that mim-
ics the mouth incubation movements and prevents fun-
gal and bacterial infections. When reared in 6-well plates, 
the eggs (especially when they have been microinjected 
or manipulated) should be cultured in aquarium water 
with antifungal and antibacterial agents, such as methyl-
ene blue (10 mg/ml) and penicillin/streptomycin (Sigma 
P4333 with 10,000 units penicillin and streptomycin 
10  mg/mL; diluted 1:1000). Plates should be kept in an 
orbital shaker at temperatures between 25 to 28 °C. Daily 
water changes are required. Although less movement and 
oxygen are required, substrate-brooder embryos can also 
be kept in tumblers or large petri dishes and 6-well plates 
on an orbital shaker.

Field collection
Cichlids are a very popular system in the fields of specia-
tion genomics, ecology, and behavior. Accordingly, field 
work is an essential part of this research. Field work is 
often performed in collaboration with local teaching and 
research institutions (e.g., University of Malawi and Tan-
zanian Fisheries Research Institute), which have provided 
excellent local expertise in both species’ distribution 
and identification. Local permits and a Nagoya protocol 
should always be in place. Cichlids can be collected in a 
variety of ways depending on the habitat. Collection can 
be performed with seine nets in shallow waters, whereas 
scuba diving is required in deeper waters. Fish are then 
chased into nets and collected into net bags for further 
studies (e.g., for phenotyping or fin clip collection for 
genomic studies). A large proportion of East African 
cichlid species are philopatric and stay in or regularly 
return to a particular area. It is thus feasible to conduct 
behavioral observations, collect genetic material, tag 
individuals, and conduct release and recapture experi-
ments to follow wild individuals and populations through 
time [31]. If species are not philopatric, field-based cage 
experiments that can harbor dozens to hundreds of indi-
viduals are still possible [32].

Major interests and research questions
A model system for many disciplines and integrative 
research
Almost as diverse as cichlids themselves are the questions 
that have been studied in cichlid fishes. Cichlids have 
become a model system for studying ecology, evolution, 
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genomics, genetics, development, and behavioral biology 
and for questions that integrate across disciplines. Cich-
lids are phenotypically highly diverse and can be easily 
studied in the wild and the lab. Due to the recent diver-
gence time (most haplochromine species diverged in the 
last few hundred thousand years), species can often be 
hybridized in the lab, permitting the identification of the 
genetic basis of adaptive traits. Furthermore, cichlids are 
also amenable to genetic manipulations and developmen-
tal analysis. One further advantage of the cichlid model 
system is that there is a rich literature on their ecology 
and their behavior in the wild [33–35], which will only be 
discussed superficially in this review. The fact that knowl-
edge exists for so many research disciplines, including 
behavioral, community, and ecosystem ecology allows 
integration across levels of biological organization, from 
genes to phenotypes to individuals, populations, and 
communities.

Understanding the cichlid phylogeny: from trees 
to networks
The phylogenetics of East African cichlids have been 
investigated using molecular markers since the early 
1990s [36, 37]. Over this 30-year period, cichlid phy-
logenetics has moved from species trees based on sin-
gle mitochondrial genes [36, 37], sets of mitochondrial 
or nuclear markers (or both) [38–41], marker sets from 
reduced representation sequencing, such as RAD-seq 
[42, 43] or hybrid capture-based approaches [44], to fully 
resequenced genomes [2–4, 6]. The generation of these 
phylogenies is currently no longer limited by the num-
ber of markers but by the complex evolutionary history 
of cichlid fishes [3, 38, 45, 46]. Insights from reduced-
representation and whole-genome sequencing made it 
evident that cichlid radiations are not tree-like and can-
not be understood as a series of branching events [3, 4]. 
The evolutionary histories of cichlid fish radiations are 
therefore challenging to reconstruct due to the preva-
lence of incomplete lineage sorting in combination with 
introgression and hybridization that occurs frequently in 
cichlids. In recent years, a major focus has therefore been 
on the identification of hybridization and introgression 
events and how they might have influenced the adap-
tive radiations of cichlid fishes and their speciation and 
diversification [3, 44–49]. For example, there is ample 
evidence that the radiations of Lake Victoria [45], Lake 
Malawi [46], and Lake Tanganyika [44] may have been 
driven by ancient hybridization events. However, pat-
terns of introgression and hybridization are so complex 
that they cannot be fully described, especially in young 
lineages such as in the very young radiation of Lake 
Victoria cichlids (likely less than 15,000  years [5, 50]). 

Therefore, these young radiations (evident also for young 
crater-lake radiations [51, 52]) are now often represented 
as phylogenetic networks and not trees [4].

Why are there so many cichlid species?
One of the central questions regarding cichlids and their 
species-rich adaptive radiations is why there are so many 
cichlids. Currently, there are 1712 taxonomically valid 
cichlid species [4], but the real number is likely much 
higher. In particular, diversification rates of East Afri-
can Rift Lake cichlids are almost unparalleled [4] and it 
remains puzzling why so many cichlid species evolved in 
these lakes while other lineages of teleost fishes or other 
clades did not radiate similarly. Ecological opportunity 
(i.e., availability of “evolutionarily accessible resources 
little used by competing taxa” [53]) is a key factor in 
explaining the diversification in the lakes. Compara-
tive studies suggest that ecological factors (such as lake 
depth) and intrinsic factors (such as traits linked to sex-
ual selection) might affect the propensity of speciation [4, 
54]. Additionally, several other phenotypic, evolutionary 
history, and genomic characteristics have been proposed 
to play a role. These include phenotypic plasticity [55], 
evolutionary innovations such as the pharyngeal jaws 
[56], a complex population history that involves ancient 
hybridization, high degrees of incomplete lineage sort-
ing and frequent introgression events [2, 38, 44–47], and 
genetic features such as transposons, miRNAs, structural 
variation, and rapid cis-regulatory evolution [2, 4, 57–59]. 
Furthermore, changes in the visual system of Lake Victo-
ria cichlids (see “Sensory system biology” section below) 
constitute a well-accepted example of sensory drive (i.e., 
divergence in communication systems driven by envi-
ronmental variation) as a facilitator of speciation [60]. 
An important area for future research is to investigate in 
detail how these genomic features and phenotypic traits 
influence the dynamics of pre- and post-zygotic isolation 
and how this might ultimately lead to reproductive isola-
tion and speciation [61].

General themes: loci of repeated and diversifying adaptive 
evolution
The parallel adaptive radiations of cichlid fishes also pro-
vide the means to analyze general patterns of evolution 
and to investigate the genomic loci that underlie evolu-
tionary adaptations. An interesting phenomenon is that 
similar phenotypes have evolved independently in several 
of the lakes, constituting a case of convergent (or paral-
lel [62]) evolution. These evolutionary replicates offer an 
opportunity to investigate if they are shaped by similar 
genetic architectures (monogenic, oligogenic, polygenic) 
[63, 64], gene networks, or even the same or similar genes 
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and mutations [62, 65–68]. For example, it has been 
shown that stripe color pattern evolution is driven by the 
same major-effect gene, agouti-related peptide 2 (agrp2), 
in the different East African cichlid radiations [68]. The 
genetic underpinnings of these cichlid phenotypes are 
mainly studied using genome-wide association mapping 
in populations and qualitative/quantitative trait loci map-
ping in pedigrees (see “Experimental approaches” sec-
tion). The relative importance of regulatory and coding 
evolution can also be studied through these approaches 
[70, 71]. Lastly and more generally, the molecular mecha-
nisms that underlie adaptive traits are increasingly stud-
ied, including miRNAs [2, 72–74], transposons [2, 57], 
epigenetic modifications [75, 76], and structural variation 
[77–79]. For example, very recently it has been shown 
that transcriptional changes of ecologically relevant 
genes are often driven by transposon insertions that then 
cause epigenetic modification (i.e., DNA methylation) 
[75]. We discuss many of the traits investigated below.

How colors and color patterns evolve
The diversity of hues and color patterns in cichlid fish is 
one of their most striking traits (Figs. 4 and 5). Especially 
in the clear waters of the Rift lakes, sexual selection and 
also natural selection has shaped an explosive diversifica-
tion of coloration. Not surprisingly, coloration traits have 
been a prime target for genotype–phenotype mapping. 
The traits that have been most intensively studied are 
melanic patterns such as stripes (horizontal; Fig. 4A) and 
bars (vertical; Fig.  4B), the haplochromine-specific egg-
spots (Fig.  4B), spots on the body (Fig.  4C), the orange 

blotch polymorphism (Fig.  4D), amelanisms (Fig.  4E), 
morphological and physiological color change, and the 
conspicuous nuptial coloration of sexually dimorphic 
species (Fig. 4F).

Most cichlids have either vertical (almost two thirds of 
the species) or horizontal (roughly one-third of the spe-
cies) melanic patterns [80, 81]. The evolution of these 
two traits is correlated with morphology (body elonga-
tion), behavior (shoaling), and habitat preference (vegeta-
tion) [80, 81]. Mechanistically, the presence and absence 
of stripes have been linked to regulatory variation of a 
single gene, agouti-related peptide 2 (agrp2), an antago-
nist to melanocortin signaling [69, 82]. In Lake Victoria, 
radiation stripes are a Mendelian trait [69], whereas in 
the Lake Malawi radiation additional modifier loci have 
evolved (or been retained), resulting in more variation 
of stripe patterns (e.g., variation in stripe number and 
continuity) [83]. Evolutionarily, the agrp2 locus is highly 
dynamic [77], with the exact cis-regulatory mechanisms 
of agrp2 regulation differing between Lakes Malawi 
(variants in the 5′ untranslated region) and Lake Victoria 
(intronic regulatory element) [69, 84]. The developmen-
tal mechanisms of stripe formation are less understood, 
but it has been suggested that the migratory pathways of 
melanophore precursors between myosepta (i.e., the con-
nective tissue separating myomeres, or the blocks of skel-
etal muscles) prepattern the trait [19]. This prepattern 
restricts where pigment cells populate the skin, which 
may constrain the variation in horizontal stripe number 
to one to three stripes. In contrast, for vertical bar pat-
terns there is no clear understanding about the genetic 

Fig. 4 Coloration phenotypes in cichlid fishes. A Horizontal stripe patterns in Melanochromis auratus (stripes). B Vertical bar patterns and egg-spots 
in Maylandia zebra. C Spot patterns in Otopharynx sp. “heterodon nankhumba”. D The orange blotch (OB) phenotype in Labeotropheus trewavasae. E 
Amelanism in Maylandia callainos. F Sexual dimorphism in Pseudotropheus saulosi with a blue male and yellow female. Photo credits: Hannes Svardal 
(A–E), Muktai Kuwalekar (F)
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basis of variation in their presence except that it is likely 
polygenic [83]. Beyond the absence or presence of bars 
there is also no knowledge about genetic factors that 
influence their variation in number, position, width, or 
other characteristics. Interestingly, compared to stripes, 
bars are more variable in number and size, sometimes 
even within species [83]. Their formation may be driven 
by multiple cellular mechanisms that affect chromato-
phore density, pigment production, and intracellular pig-
ment dispersal [18, 19]. During ontogeny, bars develop 
much earlier than stripes [85].

Egg-spots are another trait that have received consid-
erable attention. These yellow-to-red oval ornaments are 
predominantly found on the anal fin of haplochromine 
cichlid males. There is a rich literature on the functional 
role of egg-spots since the early description by Wolfgang 
Wickler in 1962 [7], with partially conflicting results 
regarding the selective agents (under sexual selection or 
not), heritability of egg-spot number and color (plastic 
or genetically determined), and role in mate choice and 
male–male competition (important or not important) 
[17, 86–88]. Several genes have been linked to the evo-
lution of egg-spots, including adaptive coding sequence 

evolution of the cell-surface protein colony-stimulating 
factor 1 receptor a (csf1ra) [89] and regulatory evolution 
of four and a half LIM domains 2 a/b (fhl2a/fhl2b) [8, 
90]. Interestingly, regulatory evolution of fhl2b has been 
linked to a transposon insertion in the promoter region 
of the gene that leads to a gain of gene expression in iri-
dophores, a silvery reflective pigment cell type that con-
tributes to egg-spot formation [8].

Another very prominent coloration trait in Lake 
Malawi and Victoria cichlids is the orange blotch (OB) 
phenotype. This phenotype is particularly common in 
females and is defined by irregular melanic blotches 
(Fig. 4D). One explanation for the sex linkage of the phe-
notype is that it evolved by sexually antagonistic selec-
tion. Females benefit from the more cryptic coloration, 
while males with the OB pattern would have a disad-
vantage over males with conspicuous nuptial coloration. 
It has been suggested that this sexual conflict (i.e., sexes 
having a different fitness strategy) has been resolved by 
the evolution of a novel female sex-determining region in 
close genomic proximity of the OB locus [91]. This leads 
to a linkage between female sex and the cryptic OB color-
ation. The orange blotch phenotype is a Mendelian trait 

Fig. 5 Axes of divergence in cichlid fishes. A selection of phenotypic traits and their variation in cichlid fishes. For example, highly diverse traits 
include trophic adaptations such as head shape (including the evolution of hypertrophied lips in crevice-feeding insect eaters) and teeth and jaw 
variation. Moreover, cichlids exhibit great variation in body shapes and fin morphology and variation in color patterns (including egg-spots) and 
behaviors, such as mating rituals and social behaviors



Page 8 of 21Santos et al. EvoDevo            (2023) 14:1 

[92] that has been linked to an allelic series that is likely 
causal for the regulatory variation of the gene paired 
box  7a (pax7a) and the aberrant migration of melano-
phores [91, 93].

The nuptial body coloration of cichlids has also been 
investigated using genetic mapping approaches [94, 95] 
and gene-expression analyses [96, 97]. Other coloration 
phenotypes that have been studied are morphological 
(slow) and physiological (fast) color changes [98–101]. 
Here, much remains to be studied with respect to their 
molecular underpinnings. Comparing both morphologi-
cal and physiological color change  evolution in cichlids 
will elucidate whether the genetic basis (e.g., coding or 
regulatory mutations) underlying variation in morphol-
ogy and physiology might differ.

Trophic adaptations: jaws, teeth, and head shape
Cichlids harbor substantial diversity in their craniofacial 
and dental morphology, such as variation in head shape 
and teeth morphology and number (Fig. 5). This diversity 
is largely driven by adaptation to distinct trophic environ-
ments [102–104]. The trophic apparatus of cichlids con-
sists of two sets of jaws. The oral jaws are responsible for 
food manipulation and ingestion and the pharyngeal jaws 
in the throat are responsible for food processing. Cich-
lid pharyngeal jaws (Fig. 5) exhibit several morphological 
properties that facilitate their processing efficiency and 
adaptability. Accordingly, it is believed that these acted 
as a “key innovation’’ that allowed cichlids to invade and 
explosively diversify in a variety of trophic niches [56]. 
Despite the importance of pharyngeal jaws for cichlid 
evolution, most work has focused on mapping differences 
in oral jaw morphology, which is strongly associated with 
head shape. For example, quantitative trait loci mapping 
(QTL) of variable oral jaw morphologies between Malawi 
cichlid species identified patched 1 (ptch1), bone morpho-
genetic protein 4 (bmp4), and limb bud-heart (lbh) as can-
didate genes associated with shape variation [105–107]. 
More recently, it has also been shown that the oral and 
pharyngeal jaws are evolutionarily coupled. This integra-
tion was mapped to a pleiotropic locus, mothers against 
decapentaplegic homolog 7 (smad7), which is proposed 
to shape both sets of jaws [108]. The coupling of jaws is 
thought to have contributed to the evolutionary success 
of cichlids by facilitating rapid and concerted shifts when 
adapting to different foraging habitats [103, 108]. Varia-
tion in jaw morphology is paralleled by variation in the 
number and shape of teeth. Several candidate genes (e.g., 
secreted frizzled-related protein 5 [sfrp5] and bone mor-
phogenetic protein binding endothelial regulator [bmper]) 
were identified to contribute to oral dentition variation 
[109]. Furthermore, the same genomic regions are associ-
ated with both variation in oral and pharyngeal dentition 

number [110, 111]. These results provide further evi-
dence for the still-debated hypothesis that jaw integration 
rather than independence may have been a key to the 
rapid trophic adaptation of cichlids [110, 111].

Notably, craniofacial morphologies (but also varia-
tion in pigmentation; see previous section) have a strong 
developmental link to a single population of cells, the 
neural crest. These cells emerge from the vertebrate 
dorsal neural tube early during development, delami-
nate, and undergo some of the longest migrations of any 
embryonic cell type to give rise to multiple derivatives 
such as pigment cells, neurons, and glia of the peripheral 
nervous system, smooth muscles, craniofacial cartilages, 
and bones. Differences in neural crest cell migration are 
associated with variation in cichlid jaw morphologies 
[105]. This suggests that variation in early neural crest 
development can contribute to species-specific differ-
ences and make cichlids an interesting alternative model 
system for biomedical research to, for example study 
basic cellular processes leading to morphological varia-
tion [102].

Lastly, another still mostly unexplored trait that is 
highly correlated with adaptation to distinct trophic envi-
ronments is body shape (Fig. 5) [112]. The differentiation 
between limnetic and benthic forms is a common theme 
throughout cichlid divergence and is associated with 
the early stages of cichlid radiations [113, 114]. A recent 
effort to map such variation used two different inter-spe-
cific crosses along the benthic–pelagic ecomorphological 
axis. In total, 55 loci contributing to variation of this trait 
were identified in these two crosses [115]. Surprisingly, 
there was no overlap between the candidate genes from 
both crosses, suggesting that the genetic basis of body 
shape is highly polygenic and differs between species.

Fins and scales: upcoming model traits for evo‑devo 
research
Many other traits show extensive inter-specific varia-
tion and have been the focus of recent investigations. 
Fin shapes (Fig.  5) vary greatly across teleost fishes and 
within cichlids. Furthermore, due to their direct develop-
ment [11], cichlid fishes are a suitable model to investi-
gate the mechanisms of fin development. For example, a 
recent study investigated the genetic networks that shape 
the evolution and individualization of spiny and soft fin 
rays [20]. Other studies have also described the transcrip-
tional and developmental changes that drive fin shape 
development and evolution (Fig. 5) [116–118]. For exam-
ple, many genes, including growth factor and WNT path-
way genes, are differentially expressed across fin regions 
[114, 115]. Moreover, wnt7aa and alpha-1 type I collagen 
(col1a1) are linked to pectoral fin ray number variation 
[116]. More research is needed to understand how these 
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genes are causing phenotypic changes mechanistically. 
Another trait that has been studied from a gene regula-
tory and evolutionary perspective are scales, which also 
show extensive variation between species [119, 120]. For 
example, fibroblast growth factor receptor 1b (fgfr1b) has 
been linked to scale shape variation [119]. Studying such 
traits will elucidate the genetic and developmental mech-
anisms underlying the astonishing variation present in 
both fin and scale shape in teleost fish.

Sensory system biology
Foraging and mating behaviors rely on multiple sen-
sory systems, including vision, olfaction, hearing, and 
mechanosensation [121]. The most well-studied cichlid 
sensory system is the visual system. Color vision is criti-
cal for reproductive success and is essential for adapta-
tion to environments with varying light regimes. As 
such, the visual systems of cichlids are highly diverse and 
have evolved specific visual sensitivities that match their 
ecology and habitat [122]. Variation can arise from dif-
ferences in cornea and lens transmission, differences in 
number and distribution of photoreceptors, and expres-
sion and sequence variation of light-sensitive opsin pro-
teins. All these changes can affect visual perception. For 
example, close relationships between opsin sequence 
changes and species light environment have been docu-
mented, such as spectral shifts towards blue light in opsin 
genes of Lake Malawi and Lake Tanganyika deep-water 
species [123, 124]. Furthermore, several opsin protein 
sequences operate under positive selection. Multiple 
cis-regulatory sequences also show signals of divergence 
[57, 125, 126]. Importantly, visual adaptation to variable 
light environments affects female mating preference and 
speciation patterns. For example, long-wavelength shifts 
in the murky waters of Lake Victoria led to changes in 
mate preference and thereby led to sympatric speciation 
of “red” shallow (Pundamilia nyererei) and “blue” deeper 
water species (Pundamilia pundamilia) [60] (i.e., specia-
tion by sensory drive).

Other less studied sensory systems include olfaction, 
hearing, and the lateral line. Cichlid olfaction is involved 
in recognition of kin [127] and conspecifics [128–130] 
and in the identification of female reproductive status 
and male social rank [131–133]. Further, olfaction may 
be involved in imprinting, presumably influencing mate 
preferences [134, 135]. The olfactory organ, which con-
tains the olfactory sensory neurons, is located in the 
nasal cavity. These neurons are directly exposed to the 
aquatic environment and contain several transmembrane 
olfactory receptors. Odorant receptors (ORs) and vomer-
onasal receptors type 1 (V1Rs) and type 2 (V2Rs) bind to 
odorant molecules and elicit a response to the odor cue 
[136]. Cichlids have a large and variable number of such 

receptor proteins. V1Rs genes show evidence of positive 
selection, which may suggest an important ecological and 
behavioral function in cichlid adaptation and speciation 
[137–140].

Cichlids also communicate through acoustic signals 
and produce a variety of sounds that are associated with 
agonistic interactions [141, 142], courtship behavior, 
mate preference [143], and maintenance of species bar-
riers [144, 145]. Variation in sound detection can result 
from morphological differences in their inner ear (direct 
stimulation) or in their swim bladder (indirect stimula-
tion). The swim bladder contains gas that is less dense 
than that in the fish body. When in contact with sound, 
this gas vibrates, transmitting the energy to the inner ear 
[146]. In many teleost fishes, there are modifications of 
the bladder or cranial morphology that increase this indi-
rect ear stimulation and increase sound detection [147]. 
Variation in both the inner ear and swim bladder mor-
phology has not been studied extensively in East Afri-
can cichlids and hence the scope of its diversity remains 
unknown [148].

Finally, the lateral line is a mechanosensory system that 
senses hydrodynamic stimuli in aquatic habitats [149]. 
It provides information about current flows, presence 
of obstacles and detection of conspecifics (e.g., shoaling 
and schooling), and presence and identity of prey and 
predators. In fishes, the lateral line comprises two recep-
tor classes, the canal neuromasts and the superficial neu-
romasts, which detect differences in water movements 
and pressure. The superficial neuromasts are distributed 
throughout the surface of the head, trunk, and tail and 
are thought to mostly assess the direction and speed of 
water currents. In comparison, the canal neuromasts are 
located in pores in the bones of the head and are thought 
to detect high-frequency pulse changes in water move-
ment, such as prey or predator presence [150, 151]. Both 
canal and superficial lateral line components vary in mor-
phology across species and are associated with variation 
in craniofacial morphology (e.g., shape of oral jaws) and 
dietary habitats [152]. Species with enlarged pores show 
a higher sensitivity to water flow, which increases their 
ability to detect prey in the dark and below the surface 
[153]. Taken together, the association between lateral line 
morphology and dietary behaviors suggests that diver-
gence in lateral-line systems contributes to the evolution 
of different feeding strategies. The loci underlying cichlid 
lateral line variation remain unidentified, but compari-
sons of canal neuromast development between species 
with wide and narrow pores suggests that heterochronic 
shifts in canal growth and morphogenesis contribute to 
adult trait differences [154, 155].
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The evolution of sex
Fishes are well known for their rich diversity in sex-
determination systems, and cichlids are no exception. 
Many sex-determination systems have been found in 
cichlids, including different sex loci on different chro-
mosomes, male and female heterogametic systems (XY 
and ZW), and both monogenic and polygenic sex deter-
mination [156]. In fact, cichlids have the highest rates of 
sex chromosome turnover and heterogametic transitions 
described to date [157, 158]. Multiple sex-determination 
systems have also been described within single species 
[93, 159, 160]. For example, three distinct XY loci were 
recently characterized in interbreeding populations of A. 
calliptera [161].

A better understanding of sex-determining mecha-
nisms provides an important context for understanding 
the evolution of sexual dimorphism, the evolution of sex-
ual conflicts, and speciation more generally. In a Malawi 
cichlid with a polygenic sex determination system (Met-
riaclima mbenjii), the different heterogametic combina-
tions (ZZXX females, ZWXX females, ZWXY females, 
and ZZXY males) result in modular morphological and 
behavioral polymorphic variation, which is generated by 
an interplay of sex-linked (e.g., genes linked to the sex-
determining gene) and sex-limited mechanisms (e.g., sex-
specific hormones) [162]. Finally, the evolution of a novel 
sex-determining system has also been associated with the 
resolution of sexual conflict (see paragraph about the OB 
phenotype in the subchapter “How colors and color pat-
terns evolve”).

The complex behaviors and brain evolution of cichlid 
fishes
Cichlids have a very diverse behavioral repertoire (Fig. 5), 
and it has been argued that cichlid brains are among the 
most complex teleost brains, with extraordinary cogni-
tive and social learning abilities [163, 164]. Social struc-
tures in cichlids can be highly complex and include 
changes in social hierarchies, whereby status can switch 
between dominant, subdominant, and submissive [165–
167]. The social structure and behavior of cichlids has 
been particularly studied in Astatotilapia burtoni, a hap-
lochromine cichlid from Lake Tanganyika and adjacent 
rivers (Fig. 1A) [164, 165], and in several species of Lam-
prologine cichlids from Lake Tanganyika [31, 168]. One 
particularly interesting behavior is the bower building of 
some Lake Malawi cichlid species, in which males build 
little pits or castles to attract females. These behaviors 
have a genetic basis [168], with initial investigations using 
population and QTL mapping approaches that revealed a 
polygenic and predominantly cis-regulatory genetic basis 
that includes many genes linked to neurodevelopment 
and neural plasticity [169]. In recent years, there have 

also been some more in-depth investigations of the neu-
ral and genetic basis of the other social behaviors of cich-
lids, such as courtship behavior, including studies that 
used genome editing [170, 171]. For example, the andro-
gen receptor copies ARα and ARβ play complementary 
roles in regulating social status, with ARα controlling 
coloration and growth and ARβ controlling reproductive 
and aggressive behavior [171]. Moreover, prostaglandin 
F2α relays fertility status and orchestrates sexual behav-
ior of females [170]. From an Evo-Devo perspective, 
cognitive evolution and large differences in brain mor-
phology are linked to differences in brain patterning dur-
ing development [172, 173]. For example, comparative 
investigations of gene expression suggest that brain dif-
ferences may directly link to variation in the expression 
in brain-patterning genes, such as six3, fezf2, shh, irx1b, 
and wnt1 [172].

Interactions with and adaptations to changing 
environments
One of the most remarkable characteristics of cichlid 
fishes is their ability to adapt to extreme and changing 
environments. Many phenotypes in cichlids, including 
trophic adaptations and coloration, are highly plastic 
(i.e., a single genotype can generate more than one phe-
notype) [174]. For example, dentition [175], especially on 
the pharyngeal jaws of cichlids, is highly plastic and alter-
nate phenotypes can be induced by different diets [176]. 
Color patterns, such as the eyebars, are modulated by 
neuronal and hormonal input and can fade or enhance in 
their contrast depending, for example, on the individual’s 
position in the social hierarchy [167]. It is still unclear 
what role plasticity has played in cichlid evolution (i.e., 
if it has facilitated or hindered speciation as debated in 
other systems [177]). Another topic for further study 
that is important for a more comprehensive understand-
ing of the interaction of fish species with their environ-
ment is the microbiome. Several studies in recent years 
have provided insights into this interaction [178, 179]. 
Lastly, it has to be noted that  despite the evolutionary 
success of cichlids and their ability to adapt to changing 
environments, many cichlid species are threatened by or 
are already extinct due to eutrophication [180] or intro-
duction of predatory fish, such as the Nile perch (Lates 
niloticus) [181].

Out of Africa—more cichlid model systems
Although cichlids of the great lakes of the East Afri-
can rift are the hotspot of cichlid diversity, Neotropical 
cichlids from South and Central America, other Afri-
can lineages, and the outgroups from Madagascar and 
India have also been studied extensively. Even though 
they are not the focus of this review, we still would like 
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to mention some of these important systems briefly. 
Crater-lake systems from East, West, and Central Africa 
(Lakes Masoko [51], Barombi Mbo [182, 183], Bermin 
[182], and Ejagham [182, 184]) and from Central America 
(Midas cichlids from Nicaragua [52, 185]) provide excit-
ing opportunities to study the early stages of speciation. 
What makes crater lake adaptive radiations more suitable 
to study early speciation than the large rift lakes is that 
crater lakes are isolated, have been seeded through only 
one or few colonization events, that often occurred very 
recently, and have a more manageable number of spe-
cies. As such, these systems are suitable for an in-depth 
analysis of the genomics of speciation. South American 
cichlids are also highly diverse and offer interesting traits 
and characteristics for investigation. For example, the 
genus Apistogramma is a rare case of pH- and tempera-
ture-dependent sex determination in teleost fishes [186]. 
Finally, many studies have addressed the evolutionary 
history across all cichlids. For example, it was recently 
found that the diversification of cichlids into Neotropical 
and African cichlid lineages occurred after the Gondwa-
nan continental split [187].

Experimental approaches
A multitude of methods for developmental, genetic and 
genomic, and phenotype and behavioral analyses have 
been established within recent decades. Here, we will 
mainly focus on two types of approaches, genotype–phe-
notype mapping and genetic manipulations, that make 
cichlids a particularly attractive system for evo-devo 
researchers. Although they do not differ considerably 
from other teleost model systems, we also provide a con-
cise overview of developmental and phenotyping tools.

Genotype–phenotype mapping
One of the reasons why the cichlid model is attractive for 
identifying the genetic basis of trait diversity is that the 
model is amenable to both pedigree-based (qualitative or 
quantitative trait loci, QTL, reviewed in [188]) and popu-
lation-based (genome-wide association [GWA], reviewed 
in [189]) genotype–phenotype mapping (Fig.  6). Both 
methods have different strengths and weaknesses that we 
discuss at the end of this section.

For QTL mapping, phenotypically variable individuals 
from the same or different species are interbred. These 
first-generation  (F1) individuals are then interbred again 
(or alternatively bred with the parents; backcross). The 
 F2 generation can be then used to identify genomic loci 
that associate with heritable traits that vary in the two 
parents. The results of QTL mapping studies are usually 
visualized with LOD plots, which show a logarithmic plot 
of the statistical support (odds ratio) for the association 
between the genetic markers and the phenotype (Fig. 6). 

Markers have traditionally been sequenced using reduced 
representation sequencing approaches (e.g., RAD-seq). 
An alternative approach that has been used more recently 
is low-coverage genome resequencing. What makes cich-
lids such a powerful system for QTL mapping (in con-
trast to other vertebrate systems) is that many species 
(especially the young haplochromine species) can still be 
hybridized and even produce fertile  F1 hybrids, allowing 
the unbiased identification of genes that contribute to 
species-specific phenotypes. Phenotypes that have been 
mapped in cichlid fishes include craniofacial variation 
[105–108], color variation [69, 83, 92, 94, 95], fin shapes 
[118], sex [158], and even behaviors such as bower build-
ing [169] (see discussion of the respective traits above).

GWA mapping takes advantage of natural recombi-
nation events present between interbreeding popula-
tions, or within populations, to map natural variation 
in traits. As many cichlid species diverged very recently 
and gene flow often persists to some extent, GWA can 
be also conducted across species (with some caveats due 
to population structure, see below). For GWA hundreds 
or thousands of wild-caught individuals are phenotyped 
(for the trait of interest) and genotyped (in cichlid fishes 
usually via genome resequencing). The resequenced 
genomes are mapped to a reference genome and vari-
ants are called. As with the QTL mapping, the combined 
genotyping and phenotyping data set is used to find 
associations between genotypic and phenotypic varia-
tion. Different methods (e.g., by incorporating a kinship 
matrix as implemented in EMMAX [190]) can be used 
to control for population structure, as this can otherwise 
have confounding effects on the results. This is especially 
advised if the phenotypes cluster by populations or spe-
cies (see e.g., [52]). GWA mapping is mostly visualized 
as Manhattan plots, which show a logarithmic plot of 
the statistical support (negative logarithm of P-value) for 
each variant (Fig.  6). For now, in African cichlids, only 
sex determination has been investigated using GWA 
mapping [161, 191]. However, because of the availability 
of genomes of hundreds of individuals [3, 4], many stud-
ies on other traits will likely be conducted in the coming 
years.

Both methods, QTL and GWA have advantages and 
limitations. QTL mapping is limited to the genetic vari-
ation that is present in the parents of the cross. Small 
effect loci mostly remain undetected due to the relatively 
small number of individuals (approximately 150–500 
individuals) obtained in the  F2 generation. On the other 
hand, when compared with GWA, the QTL approach 
suffers less from the risk of false positives. With respect 
to resolution, QTL mapping is limited by recombina-
tion, usually restricting the confinement of target regions 
to a few hundred kb to a few Mb. For major-effect loci, 
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the size of target regions can be reduced through fine-
mapping. The final size of the target region is defined by 
the recombination breakpoints in these individuals. A 

further fine-mapping beyond this level of resolution is 
not possible with this methodology. However, popula-
tion data (e.g., inter-specific  FST divergence scans using 

Fig. 6 From cichlid phenotypes to genotypes to functional validation. Over the last decade, cichlid fishes have become a prime model to study 
genotype–phenotype relationships. The ability to collect samples from the field and to conduct hybrid crosses (even between species) makes it 
possible to identify the genetic bases of traits using genome-wide association (GWA) mapping and qualitative/quantitative trait loci (QTL) mapping, 
respectively. In combination with other methodologies (especially approaches that include functional validation) candidate genes and mutations 
can be identified and functionally validated as genes underlying phenotypic variation. Note that for simplicity a simple (qualitative) trait was used in 
this figure; both analyses can be and are also performed with complex (quantitative) traits
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genome resequencing data or targeted sequencing) have 
been used to further characterize the intervals and to 
identify causal regions and variants [69, 84, 108]. Regions 
can be screened for genes with differential gene expres-
sion (between species, genotypes in the  F2, or by screen-
ing for allele-specific expression in  F1 individuals) or 
signals of selection in wild populations. Lastly, it should 
be noted that QTL mapping when performed in the lab-
oratory may not target phenotypic variation that is only 
expressed in the wild (through genotype-by-environment 
interactions).

In contrast, GWA mapping recovers all genetic vari-
ation that can be genotyped based on the reference 
genome. It can therefore (depending on the sample size) 
detect both small and large effect loci (at least when using 
sufficient sample size). False positives can occur due to 
confounding effects if allele and phenotype frequen-
cies strongly differ between populations. It is possible to 
partially correct for these effects, but strong population 

structures can pose challenges. The resolution of GWA 
mapping is much higher and is only limited by the size of 
linkage disequilibrium (LD) blocks in the population. It is 
possible to identify causal variants with GWAS, although 
often only haplotypes that include multiple target vari-
ants are identified. Another caveat of GWA mapping is 
reference biases that occur if the reference genome does 
not cover the region where potential causal variants are 
located and cannot therefore be genotyped. In this case, 
only variants in close genomic proximity are mapped (i.e., 
in LD) that would however also show high association if 
the causal variant is missing due to reference bias [192]. 
The combination of QTL and GWA mapping can offer a 
complementary strategy that combines the strengths of 
both methodologies [52].

In recent years, these genotype–phenotype mapping 
approaches have been successfully applied and causal 
regions and genes were identified using additional down-
stream analyses (Fig. 6 and following sections) to identify 

Table 1 Examples of genotype–phenotype mapping studies in cichlid fishes

We included forward genetic studies that show reasonable support for a causal genotype–phenotype relationship (e.g., use independent experimental approaches, 
functional validation, or those phenotypes such as opsins with a very direct genotype–phenotype relationship). Targeted genotyping includes Sanger sequencing 
or microsatellite studies. Gene expression includes qPCR and in situ hybridization. Functional tests include CRISPR–Cas9, transgenesis, and pharmacological 
manipulation. QTL qualitative/quantitative trait loci mapping, GWA  genome-wide association mapping
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and validate the putatively causal genes and mutations 
(Table 1).

Gene function manipulation
Progress towards understanding the mechanistic basis 
of organismal diversification has often been hindered 
by the lack of tools to analyze the functional effects of 
genetic variation. During the past decade, cichlids have 
emerged as an integrative model system capable of bridg-
ing several levels of biological organization, from varia-
tion in DNA sequences to cellular and developmental 
mechanisms underlying trait variation. Gene function in 
cichlids has traditionally been studied using pharmaco-
logical manipulations using small molecules, such as ago-
nists or antagonists of the target gene or gene pathways 
[106, 173, 195, 196]. More recently, CRISPR/Cas9 has 
been used and shown to work at high efficiency in sev-
eral cichlid species (Astatotilapia burtoni, Astatotilapia 
calliptera, Pundamilia nyererei, Oreochromis niloticus) 
to target both coding and non-coding sequences [29, 69, 
197–199]. DNA, RNA, proteins, or combinations thereof 

are injected at the single- or two-cell stage into oocytes 
using microinjection setups (Fig.  7). The targeted spe-
cies belong to the Malawi (A. calliptera; Fig.  8B), Vic-
toria (P. nyererei; Fig.  8C), and Tanganyika (A. burtoni) 
radiations and include a riverine outgroup (O. niloticus). 
Some of these studies provided strong support for target 
genes that control specific traits. For example, knockout 
of agrp2 in P. nyererei revealed that the gene is responsi-
ble for repressing stripes in this normally unstriped spe-
cies [69]. Moreover, knockout of ptgfr demonstrated the 
importance of the gene in initiating courtship behavior in 
A. burtoni [170].

The next steps are to expand these tool sets to more 
cichlid species, and more importantly to optimize 
allelic-exchange protocols to swap single alleles or 
haplotypes from one species to the other. Finally, the 
generation of reporter construct lines to test when 
and where certain non-coding regulatory regions drive 
gene expression has also been established in A. burtoni 
and O. niloticus using the Tol2 transgenesis method 
(Fig.  8A) [200, 201]. The fact that cichlid clutch sizes 

Fig. 7 Genetic manipulation techniques. A–C Over the last two decades, techniques such as Tol2 transgenesis and CRISPR–Cas9 genome editing 
have been successfully adapted in cichlid fishes. A challenge compared to traditional model teleost fishes (such as zebrafish and medaka) is 
the small number of eggs per clutch (usually 15–50 eggs), the oval egg shape, and the difficulty in timing fertilization. As in zebrafish, eggs are 
microinjected using an air pressure-driven microinjector (A). Eggs can be held with forceps or put into a supporting agarose mold (B). After 
microinjection, eggs are kept individually in well plates until larvae are free swimming (C). Photo credits: Bettina Fischer (B)
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are smaller and generation times longer than other 
teleost systems make both transient analyses and 
establishing stable lines more challenging. Thus, the 
development of novel methodologies, perhaps using 
CRISPR/Cas9-mediated knockins [202], to generate 
stable reporter lines would be beneficial. It is likely 
that this will greatly improve in the next few years. 
The methods can be considered as established for both 
substrate- and mouth-brooding species, and there are 
now excellent resources and protocols for microinjec-
tions and genome editing in cichlid fishes (see [29] 
https:// cichl ideng ineer ing. weebly. com/ trans genics. 
html; last accessed 17 June 2022 for mouth-brooding 

cichlids and [30] for substrate-breeding cichlids). The 
main challenges in terms of feasibility for the differ-
ent types of species are breeding frequency and clutch 
sizes. Other differences (e.g., survival rates or effi-
ciency of transgenesis or genome editing) have not 
been yet assayed.

Developmental biology
To characterize gene-expression patterns and protein 
localization, several in  situ hybridization (Fig.  8D) 
and antibody-staining protocols (Fig.  8F) have been 
optimized for cichlids. These include both chromo-
genic and fluorescent labeling techniques applied in 

Fig. 8 Experimental and phenotyping approaches in cichlids. (A–I) A wide variety of methodological approaches, including methods available 
in cichlid fishes that are comparable to other teleost fish model systems. These include methods for genetic manipulations (A–C), gene 
expression and protein localization (D–F), and phenotyping in embryos and adults G, H. A Transgenic cichlid fish of the species Astatotilapia 
burtoni constitutively expressing GFP under the elongation factor 1 alpha, ef1a promotor. B Stable CRISPR–Cas9 knockout of the pigmentation 
gene oculocutaneous albinism II, oca2 in Astatotilapia calliptera leading to loss of melanin in melanophores. C Transient CRISPR–Cas9 knockout 
of the “stripe gene” agrp2 in Pundamilia nyererei, resulting in the appearance of horizontal stripe patterns in this usually non-striped species. D 
Fluorescent in situ hybridization (ISH) for rhobdopsin 2b, rh2b and longwave-sensitive (lws) opsin in the Malawi cichlid Maylandia zebra. E In situ 
DNA-hybridization chain reaction (HCR) for pax7 (orange) and SRY-box transcription factor 10, sox10 (magenta) in Rhamphochromis sp. ‘chilingali’. F 
Immunohistochemistry (IHC) for nerve fibers on scales of Melanochromis auratus using an acetylated tubulin antibody. G Cartilage staining of an 
embryo of Tropheops sp. ‘mauve’. H MicroCT 3D visualization of Aulonocara stuartgranti. I Microscopic analysis of melanophore development and 
patterning in an embryo of the Lake Victoria basin cichlid Haplochromis latifasciatus. Photo credits: Scott Juntti (A), Joel Elkin / Bethan Clark (B), Brian 
Dalton / Karen Carleton (D), Aleksandra Marconi (E, G), Duncan Edgley (H), Jan Gerwin (I)

https://cichlidengineering.weebly.com/transgenics.html
https://cichlidengineering.weebly.com/transgenics.html
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embryos, adult tissues, and on sections [8, 11, 20, 23, 
69, 203]. More recently, in  situ hybridization chain 
reactions (HCR) that can fluorescently label tran-
scripts of up to five genes has also been applied to 
study cichlid embryogenesis (Fig.  8E) [204]. Further, 
cartilage and skeletal stainings (Fig.  8G) were devel-
oped for several cichlid species to particularly address 
intra- and inter-specific variation in craniofacial, ver-
tebral, and fin development [11, 22]. Finally, studying 
the ontogeny of cichlids throughout their complete 
development and adulthood and at cellular resolution 
(Fig. 8I) using repeated anesthesia and the use of epi-
nephrine to contract pigment cells (to improve visuali-
zation of underlying tissues and ease quantifications) 
have allowed researchers to document embryo and 
juvenile pigmentation development [18].

Morphological and behavioral phenotyping
Micro-computed tomography (μCT) scans have been 
repeatedly applied to measure variation in adult head 
and body shapes and other internal morphological 
features (e.g., pharyngeal bones; Fig.  8H) [6, 68, 108]. 
Further, 2D and 3D geometric morphometric analyses 
using a variety of software can be applied to charac-
terize axes of morphological variation [6, 22, 68, 196]. 
Cichlids are also amenable to behavioral experiments 
in the field and in the lab to study collective behavior, 

social structures, kin selection, sensory systems, and 
neuroethology, among other topics [31, 133, 170].

Research community and resources
The cichlid community has held bi-yearly Cichlid Sci-
ence meetings since 2010, which have helped community 
engagement and growth. Several comprehensive reviews 
and books regarding the natural history, behavior, ecol-
ogy, and evolution of these fishes have been published 
[33–35]. These, together with the recent advances in 
developmental genetics tools, allow for increasingly inte-
grative and detailed studies.

There are several established inbred strains of cichlid 
species that have been in captivity for decades, such as 
certain populations of A. burtoni and N. brichardi [2]. 
Moreover, there are amelanistic lines that have been gen-
erated using CRISPR–Cas9 [29, 199] or derived from 
spontaneous mutations [205]. Importantly, most cichlid 
species can be kept in the laboratory, and most are easily 
collected in the field with the appropriate export permits. 
There are also multiple preserved cichlid collections 
spread throughout the world, some of which contain 
specimens that underwent whole-genome sequencing 
(e.g., University of Basel and University of Cambridge) [3, 
6]. These represent unique collections that can be studied 
in future genotype–phenotype mapping studies.

Reference genomes of seven species representative 
of East African cichlid diversity have been sequenced, 

Table 2 Overview of all cichlid reference genomes

The list includes all chromosome level (CL) genomes published or made accessible before 2022 and genomes available at Ensembl (release 106; April 2022)
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together with one South American cichlid outgroup (A. 
citrinellus) (Table  2). Furthermore, there are genome 
resequencing data for hundreds of species that can be 
used as a resource for speciation and adaptation genom-
ics, character state and trait evolution reconstructions 
and phylogenomics projects (for example see [3, 4, 6]). 
Finally, there are also hundreds of RNAseq datasets for a 
variety of adult and embryonic tissues spanning the three 
major lakes in NCBI’s database.
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