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HYPOTHESIS

The application of irreversible genomic 
states to define and trace ancient cell type 
homologies
Oleg Simakov1* and Günter P. Wagner2,3,4 

Abstract 

Homology, or relationship among characters by common descent, has been notoriously difficult to assess 
for many morphological features, and cell types in particular. The ontogenetic origin of morphological traits means 
that the only physically inherited information is encoded in the genomes. However, the complexity of the underlying 
gene regulatory network and often miniscule changes that can impact gene expression, make it practically 
impossible to postulate a clear demarcation line for what molecular signature should "define" a homologous cell type 
between two deeply branching animals. In this Hypothesis article, we propose the use of the recently characterized 
irreversible genomic states, that occur after chromosomal and sub-chromosomal mixing of genes and regulatory 
elements, to dissect regulatory signatures of each cell type into irreversible and reversible configurations. While 
many of such states will be non-functional, some may permanently impact gene expression in a given cell type. Our 
proposal is that such evolutionarily irreversible, and thus synapomorphic, functional genomic states can constitute 
a criterion for the timing of the origin of deep evolutionary cell type homologies. Our proposal thus aims to close 
the gap between the clearly defined homology of the individual genomic characters and their genomic states 
to the homology at the phenotypic level through the identification of the underlying evolutionarily irreversible 
and regulatory linked states.
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Homology at the organismal level, including 
developmental processes [1, 2], organ and cell type 
homology [3–5] has been one of the most discussed 
and debated concepts in the field of evolution and 
development [6]. At the molecular level, lately fueled 

by the technological advancement in single cell 
transcriptomics, the "molecular signature" of many 
morphological or developmental traits could be 
identified [3, 7–11]. However, complex interplay between 
regulatory networks during development [12] and the 
transcription factor logic associated with cell types [3] 
makes it difficult to identify a clear shared set of genes 
that identify a given cell type for clades that have been 
separated from each other for hundreds of millions of 
years.

High genomic evolvability and complexity of genomic 
features that can impact gene regulatory networks 
and their phenotypic outcomes is, arguably, the main 
unresolved problem when attempting to identify the 
mechanistic basis of homologies at the organismal level 
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and among distantly related clades. Many genomic 
changes, from small nucleotide substitutions, enhancer 
evolution to duplications of genes and regulatory sites 
[13–15] can lead to evolutionary novelty. However, 
these changes can also equally lead to loss of such novel 
characters. It is often unclear how often such events can 
or have occurred on the vast macro-evolutionary (above 
clade-level) time-scale, and how often regulatory wiring 
can be reversed to the ancestral states [16]. Furthermore, 
it has been found that the genetic basis for clearly 
homologous characters can be different, in particular in 
terms of its inducing factors during development [17], 
while the core identity mechanisms are much more 
conserved [18].

At the 64th Phyletic Symposium in Jena last year, 
the lively discussion highlighted again the particular 
problems when assessing the homology of phenotypes 
and developmental processes that comprise the hourglass 
model [7, 19–21]. Ideally, a clear signature of a cell type 
or a developmental process rooted in the underlying 
genomic information needs to be identified.

In this hypothesis we argue for a possible link between 
genome structure, cell type identity, and developmental 
process homology at the macro-evolutionary level. 

We propose the identification of irreversible or 
highly "entangled" genomic states [22] that may 
affect gene expression and that can be related to the 
origin of a particular cell type, cell type family, or the 
underlying developmental process. We suggest that 
irreversibility is the key property in any identification 
of distant organismal homologies, as, considering the 
macro-evolutionary time-scales, there is otherwise 
no theoretical boundary to (re)evolve various gene 
expression patterns. Only gene regulation that is linked 
to a specific irreversible genomic state can be treated 
as a stable synapomorphic character within a given 
clade. Evolutionary irreversibility of a given genomic 
configuration also implies that without the information 
from the outgroup species about the possible ancestral 
state, we irrevocably lose this ancestral state information.

Over the recent years, accumulation of chromosomal-
scale genomes has enabled us to trace the evolution 
of whole chromosomes and study their composition 
as a function of orthologous gene families [23, 24]. 
One of the key identified properties for animal 
chromosomal evolution was the so-called "fusion-
with-mixing" (Fig.  1): when two ancestrally conserved 
chromosomes undergo fusion, the genes on them 

Fig. 1  Irreversible genomic states at chromosomal (left) and sub-chromosomal (right) scales, their origin, and occasional function. Left: 
chromosomal fusion-with-mixing occurs via, e.g., Robertsonian translocation, followed by intra-chromosomal inversions. The information 
about the ancestral two states (two separate chromosomes) is lost after the mixing and if no plesiomorphic (outgroup) information is available. 
Right: similar mixing can be observed for the more functionally relevant enhancer–promoter (E–P) contacts within a single chromosome 
(labeled as region "A" and region "B", with E–P links shown in blue and red, respectively). E–P links are mixed via intra-chromosomal inversions 
and translocations within an interactive environment (mediated, e.g., through DNA loop-extrusion) making it unlikely for random inversions 
to disentangle them into the original state without breaking functional E–P contacts. Over longer time-scales, this entanglement may lead 
to the evolution of novel (green arrows) persistent E–P links. Black vertical arrows indicate possible evolutionary transitions between homologous 
states (two-way arrow: reversible; one-way arrow: irreversible). Slightly thicker one-way arrow for the final mixed state suggests higher level of its 
entropic mixing
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mix through intra-chromosomal translocations and 
the resulting state (mixed chromosome) cannot be 
reverted to the original two states comprising the two 
ancestral gene complements [23]. This chromosomal-
scale mixing happens either when whole chromosomes 
or their arms fuse ("algebraic") [23, 24], or after large 
genomic rearrangement events that break chromosomal 
homologies ("non-algebraic") [25–29]. It thus constitutes 
a very strong synapomorphic character that, once 
established, cannot be reverted and is expected to be 
observed in all descendants of a particular lineage. This 
property has already been utilized to shed new light onto 
highly debated phylogenetic positions [30].

The observed maintenance of chromosomal-scale 
linkages can be largely explained by meiotic constraints 
[31–33] and so far little evidence exists of any regulatory 
function [34]. On the other hand, how genes explore their 
local, sub-chromosomal, interactive environments and 
the impact of this process for the evolution of novel gene 
regulation has already been suggested (e.g., the addition 
of hundreds of novel topological and co-regulated units 
after large-scale genome rearrangements [35]). More 
recent insights suggest that, due to the ongoing process 
of intra-chromosomal translocations, hundreds of 
stable regulatory interactions can emerge even within 
fully retained (unfused) chromosomes since their origin 
in the metazoan ancestor [22]. The constraint for the 
maintenance of such sub-chromosomal linkages can be 
diverse. Mixing of enhancer–promoter (E–P) interactions 
within a topologically interacting space (e.g., via loop-
extrusion or topologically associating domains, TADs 
[36–39], as well as loop or meta-loop structures [40]) may 
create an entangled configuration that is very unlikely 
to be unmixed by random inversions, as these would 
otherwise break functional E–P contacts (Fig.  1). This 
constraint thus leads to mixing that is analogous to the 
chromosomal fusion-with-mixing, but on a much smaller, 
sub-chromosomal, level. Similar to the deeply conserved 
chromosomal-level synteny, such constraints may result 
in retention of unrelated genes and their regulatory 
regions within specific genomic neighborhoods (Fig.  1). 
This prediction is corroborated both by the frequently 
observed micro-synteny in animal genomes, including 
genomic regulatory blocks, the bystander model [41–43], 
as well as co-expressed or co-regulated regions [44–46]. 
These results were also recently complemented by the 
emergent data on genomic topological structure presence 
and conservation across animals [36, 38, 47], as well as 
by the findings that translocations usually happen at the 
TAD boundaries [48].

In this "mixing" view, the observed maintenance of 
local linkages does not imply an immediate functional 
advantage, with any potential synergistic function 

evolving after this initial entanglement (Fig.  1). Novel 
functional interactions may thus arise with substantial 
delay after the original entanglement. However, the 
irreversibility of this evolutionary process (no separation 
into ancestrally separate regulatory units) enables us to 
screen such states for specific changes in gene expression 
and, eventually, to gene expression that is associated 
with cell type development or function. This implies that 
gene sets that define each cell type or a developmental 
stage can be analyzed in terms of their synapomorphic 
states or regulatory entanglements. Phylogenetic dating 
of such regulatory entanglements and quantification 
of their irreversibility in particular can indicate at what 
evolutionary node the novelty arose and that a scenario 
of re-ancestralization (unmixing or disentanglement) can 
be ruled out. It also enables to define the probability of 
convergence of such mixed states, as has been done for 
chromosomal-level fusion-with-mixing events, which 
will depend on the number of the involved genomic 
elements that undergo mixing [24, 30].

The exact quantification and the methodology of 
the identification of such states begins to emerge [22], 
building on novel interdisciplinary applications, including 
topological theories [49] in macro-evolution. Such 
ideas may establish a fruitful testing ground for many 
deep evolutionary phenotype homology hypotheses. A 
signature of such entangled states would comprise of a 
set of enhancers and their target gene(s) located within 
one interactive region (e.g., a TAD or a loop) where the 
homologous regions in multiple outgroup species are 
located either in separate interactive environments or 
on different chromosomes [35] (Fig.  1). The changes in 
the gene expression associated with a particular cell type 
function and development should also be tested in this 
context and it should be expected that the regulatory 
entanglement facilitated the emergence of a more 
complex regulatory logic, e.g., by creating additive sub-
functionalized enhancers or entangled super-enhancers 
within that region [50, 51]. Furthermore, regulatory 
entanglement may also lead to the accumulation of 
several such states within the same genomic locus, i.e., 
two already entangled states undergoing further fusion 
and mixing. In the developmental context, an example 
may constitute the vertebrate HoxD cluster and complex 
regulation of the C-TAD and T-TAD regions around it, 
compared to the plesiomorphic invertebrate state [41, 
52–54]. While complex enhancer logic in many systems 
and loci has been reported, including enhancers that act 
over larger genomic distances [55], the determination of 
how much of it arose through regulatory entanglement 
is lacking. It is important to note that, similar to 
chromosomal rearrangement events in some clades that 
break the ancestral metazoan chromosomal homologies 
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[25], sub-chromosomally mixed clusters such as Hox 
can also break apart and scramble within or between 
chromosomes (e.g., Hox cluster scrambling in some 
metazoan lineages [42, 56, 57]). However, as at the 
chromosomal level, sub-chromosomal  fission  products 
are not homologous to the ancestral pre-fusion or pre-
mixing state, i.e., they cannot theoretically revert back to 
any of the proposed ancestral Hox configurations [58].

An interesting emerging aspect of this thinking is the 
question  whether genome expansions and contractions 
can facilitate the origin of the entanglements. In 
particularly small genomes [59, 60], regulation is often 
restricted to very proximal regions or even introns. 
The role of genome topology has also been discussed 
or disputed in some model organisms [40, 61, 62]. Such 
genome compaction may facilitate the evolution of 
segregated states, with proximal or intronic regulation 
[60]. This, in turn, may enable the observed very fast 
genomic reshuffling in these clades. Fast turn-over rates 
of regulatory and coding sequence evolution in such 
genomes also highlights that the process of separating 
genes into distinct regulatory units does not mean 
"disentanglement" and reintroduction of the ancestral 
state but rather the evolution of a new homologous unit. 
Contrary to compact genomes, in larger and expanding 
genomes, accumulation of transposable elements and 
increased E–P distances may lead to the formation of 
constrained entangled states that are susceptible for 
single inversion or translocation events to break existing 
regulatory links. This may lead to the “fossilization” 
of such entangled states and, counterintuitively, 
maintenance of a more ancestral genome architecture, as 
has been observed for some of the larger and expanded 
animal genomes (e.g., [24, 63]). Finally, duplications and 
losses at local and whole genome level can substantially 
impact the mixing dynamics, producing very different 
entangled regions in phyla that experienced one or 
another type of such evolutionary modification (e.g., 
[64]). Importantly, loss of entangled states or their 
decomposition into new regulatory units does not mean 
loss of phenotypes. Rather, it defines the limit on the 
ability to trace their homology and, if such configurations 
can be linked to phenotypes, the homology of 
phenotypes.

In general, this logic may be seen similar to what has 
been described for phylostratigraphy approaches using 
orphan (novel) genes and other genomic changes that 
are evolutionary very rare [65, 66]. However, novel 
genes by definition have no homology relationship to 
the outgroups where those genes are not found. Thus, 
such characters have limited implications for ancient 
cell type origination. In this context, it is also important 
to note that we do not propose that irreversible states 

resulting from mixing of genes and regulatory elements 
are the only driving force in phenotype or specifically 
cell type evolution. Clearly, many studies have shown a 
tremendous multitude of genomic changes that can result 
in changes in the gene expression. For core regulatory 
complexes (CoRCs), co-evolution and co-adaptation 
among transcription factor proteins has been proposed 
which may comprise a novel "mixed" state [3, 67]. 
However, without a clear understanding of transition and 
reversibility properties of such changes across macro-
evolution their implications for the cell type constituting 
molecular signatures are limited. We can thus envisage 
the next macro-evolutionary genomics frontier that 
will encompass studying irreversibility properties in the 
evolution of a plethora of such states that define cell 
type and organ development. If our hypothesis is true, 
we would also expect that many recently uncovered 
regulatory changes that are associated with major 
innovations (e.g., [68–72]) are likely embedded into 
larger entangled environments, which, in turn, facilitate 
their long-term maintenance.

In summary, we propose that to be able to identify 
homology at the macro-evolutionary scale, irreversibility 
of the underlying genomic states, if present, may 
comprise a key criterion. We argue that viewing genomes 
as "fields", i.e., studying positional characters and their 
regulatory entanglement along chromosomes, may 
provide a testable concept to help address this long-
lasting question. Knowledge and phylogenetic dating 
of entangled genomic states will be useful in directing 
sequencing efforts of species that may still retain some of 
the ancestral unmixed configurations, helping quantify 
how much of the ancestral information has been lost due 
to this irreversible mixing. Finally, further dissection of 
such states across animals will help us refine the concept 
of homology and identify what levels of development 
or the resulting morphological organization are most 
applicable to study in terms of their underlying genomic 
configurations.
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